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Semi-Discrete Finite Element Method Analysis of
Arbitrary Microstrip Elements—Static Solution

Marat Davidovitz, Member, IEEE, and Zhiqiang Wu, Student Member, IEEE

Abstract—The Semi-Discrete Finite Element Method is applied
to solve the Poisson equation for a class of microstrip structures.
This numerical technique is a variant of the conventional Finite
Element Method. Its name stems from the fact that finite element
approximation is implemented only along two of the Cartesian
coordinates, while the solution dependence on the third is handled
analytically. When applicable, this method is simpler and more
economical then the conventional fully-discrete version. Conver-
gence properties of the solution are examined, and its validity
tested for a number of geometries through comparison with other
solutions and published data.

I. INTRODUCTION

N MANY situations of practical interest, particularly at

lower frequencies, planar microstrip circuits can be ac-
curately represented by lumped circuit models derived on
the basis of static analysis. Capacitances associated with
such models can be determined by solving, in most cases
numerically, an appropriate boundary value problem for the
Poisson equation. A variety of formulations and numerical
treatments have been employed in microstrip capacitance
calculations in the past [1]-[8].

In one possible approach to microstrip circuit modeling,
the governing partial differential equations are discretized by
means of the finite difference and the finite element methods,
and their variants. Particularly relevant to the subject of
this paper is the Method of Lines (MOL) [7], which is a
semi-discrete variant of the finite difference method. In the
Method of Lines discretization is introduced only along two
of the Cartesian coordinate directions, thereby transforming
the original set of partial differential equations into a set
of coupled Ordinary Differential Equations (ODE). This set
of equations can be solved analytically in most cases of
interest. Consequently, the computational burden, including
CPU time and storage requirements, is considerably reduced
in comparison with classical finite difference schemes. An
extensive review of the MOL applications, including the
contributions by Pregla, Shulz, Diestel, Worm, and others can
be found in [7].

In this paper a Semi-Discrete Finite Element Method (SD-
FEM) [9], [10] is described and applied to calculate the
capacitance of microstrip patches. This method is the finite
element analogue of the MOL. Although the partial discretiza-
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tion approach is common to both the MOL and the SDFEM.
their analytical and numerical characteristics are different.
Specifically:

1. The discretization in the SDFEM is not limited to rect-
angular grids. The domain can be divided into elements
of varying sizes, orientations and shapes. Thus, arbitrary
microstrip structures can be modeled very accurately.

2. Finite element methodology facilitates the use of un-
structured meshes and higher-order polynomial approxi-
mations. Computer algorithms based on these techniques
yield simple, yet generally applicable, software.

3. Since finite element meshes are not tied to specific grids,
they are amenable to locdl refinement.

4. In applying the MOL to thin microstrip elements, nodes
adjacent to microstrip boundaries are constrained to
specific locations in order to satisfy the edge-condition.
Transition conditions at dielectric boundaries also re-
quire special treatment. In certain SDFEM formulations,
such constraints can be incorporated without the need
for special treatment.

In Section II of this paper an SDFEM analysis of the
Poisson equation for microstrip structures is presented. The
mathematical statement of the boundary value problem is
given in the first part of the section. A weak or variational
form of the Poisson equation, to be used as the basis for the
SDFEM method analysis, is introduced. The finite element
methodology is used to discretize the weak formulation, re-
ducing the problem to a set of coupled ODE. A technique
for solving the ODE set by employing a transmission line
analogy is described. Throughout the derivation of microstrip
geometry remaines arbitrary.,

Computer implementation of the solution is discussed and
numerical results are presented in Section III. The choice of
the basis functions used in computing the results, methods
for calculation and assembly of the finite element matrices
are briefly mentioned. An outline of the mesh generating
algorithms is also presented. Validation of the solution is
considered next. Capacitance of two canonical microstrip
shapes, namely the circular and the rectangular is computed
and compared with the values obtained from an integral
equation solution, as well as with data obtained from a number
of referenced sources. Finally, to illustrate the versatility of
the SDFEM formulation, capacitance of more complicated
microstrip geometries is calculated and presented in graphical
form.

Conclusions are presented in Section IV, which also in-
cludes suggestions for future work.

0018-9480/93$03.00 © 1993 IEEE
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Fig. 1. Shiclded microstrip patch in a stratified dielectric medium

(A.dA—cross-section and its boundary, respectively).

II. FORMULATION OF THE SOLUTION

A statement of the proposed problem, outlining the main
assumptions, is presented in this section. The semi-discrete
finite element method is introduced and applied to reduce the
formulation to a form suitable for computation.

Consider a planar circuit element formed by a single con-
ductive sheet embedded in a stratified dielectric medium,
as shown in Fig. 1. The conductive strip is assumed to be
infinitessimally thin, but otherwise no restriction is placed
on its shape. The lateral extent of the dielectric is limited
by a cylindrical metalic enclosure, which may have an arbi-
trary cross-section. Metalic plates, parallel to the dielectric
interfaces, are introduced to terminate the structure on the
top and the bottom. Later it will be shown that although
numerical considerations dictate that the model have finite
lateral dimensions, vertically it may extend to infinity in either
direction. Moreover, the formalism introduced in this section
can be used to extend the analysis to circuits composed of any
number of dielectric layers and parallel metalic strips.

Problem Statement

In order to evaluate the capacitance of the circuit element
shown in Fig. 1 it will be necessary to solve the following
boundary value problem:

1. Poisson’s equation in the nth layer:

1
V(. y,2) = = —p(@,y,2) M

where ¢(z,y, z)—potential ¢,—permittivity of the layer
p(z,y, z)—charge density distribution

0 ifn=1,3
p(x’y’z)_{a(m,y)(S(z—z’) ifn =2 @
2. Boundary conditions:
¢(@,y,2) =0 if(z,y,2) eW, T, G 3
¢(x,y,z) = ¢0 lf (xayaz) S S (4)

3. Transition conditions at the kth dielectric interface (z =
Zk):

oz, y,21) = d(m.y, %) Q)

¢
€k+1 —8—;(:6’ Y, Z}j

g
) = e 22, 57) ©)
Solution of the posed problem yields o(xz,y)—the charge
density distribution on the strip, from which the capacitance
can be calculated using the following formula

Q
Cs=-— D
bo
where () is the total charge residing on the strip, i.e.
Q= / o(z,y)dzdy 8)
s

Weak Form of the Problem Statement

In constructing finite element solutions it is cothmon to
abandon the differential equation statement of the problem in
favor of the so-called weak or variational formulation [11].
The semi-discrete FEM differs from the so-called conventional
methods in one key respect. In the semi-discrete approach one
of the Cartesian coordinates is treated as a parameter and finite
element discretization is introduced only on surfaces transverse
to this coordinate. For the problem at hand the z-coordinate
will serve as a parameter.

A weak formulation of (1) which will be used as the basis
for subsequent numerical analysis seeks a function ¢(z,y, z)
which will satisfy

2
/ {»«Vm Vi + Z—fzﬁ + lm/,] dz dy
A Z €n

+f % hde=0  (©
3A6n

for all values of z and all weight functions ¥ (z,y) satisfying
certain integrability conditions [11]. The integration domain
in (9) is the cross-section A of the structure shown in Fig, 1.
¢ /0n denotes the normal derivative of ¢ on the contour 0A
bounding the cross-section A, and V; is the transverse (to z)
gradient operator.
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Finite Element Approximation

A combination of numerical and analytical methods will be
utilized to obtain an approximate solution to (9). In the first
stage of analysis, the cross-section A of the structure will be
divided into a finite number of simply-shaped sub-domains or
elements, collectively known as the finite element mesh. The
details of mesh construction are considered in Section IIL

After the cross-section A has been discretized the Galerkin
method is implemented to construct an approximate solution
to the problem. The sought solution is expanded in terms of
the chosen basis set {¢;(z,y)}; as follows

¢(w7y,z) = Z’U](Z) ¢J(muy) = %(xvy) ”(Z)

J

(10)

where

v;(z)—value of the approximate solution at (z;,y;, ),

(z,,y,)—coordinates of the jth node in the mesh,

¢,(z, y)—jth basis function,

d(z,y) = vect{@(m, ¥}

u(z) = vect{v;(2)},

and tilde denotes transposition.

The basis functions ¢; are generated using low-order poly-
nomials, defined piecewise over the individual elements. Each
basis function has a value of unity only at one node in the
mesh and is zero at all other nodes, ie., ¢;(z;,y:;) = 6,1,
where (x,,y;) are coordinates of the kth node in the mesh
and 6,; is the Kronecker delta.

Substitution of (10) into the weak statement (9) and use of
the functions {¢;(z,y)}Y, to test the resulting equation over
the domain A, leads to the following system of NV coupled,
ordinary differential equations in the N unknowns v;(2)

d*v(z) 1 ,
T Av(z) = —E—;s&(z -2

where v,s are N X 1 vectors and A, B are N x N sparse,
symmetric and positive-definite matrices, whose elements are
defined by the following equations

B

1D

4 = /A Vidi - Vid; da dy (12)

bij = / 6:; da dy (13)
A

szz/a@dxdy (14
A

where o(z,y) is the surface charge density defined in (2).
Note that the boundary integral term in (9) does not con-
tribute to (11)—(14). This has been accomplished by requiring
that the weight functions have zero values on nodes located
on the boundary JA of the cross-section. Thus, the boundary
condition (2) on the lateral wall W (Fig. 1) is satisfied.

Solution of the ODE Set

Although a number of nuterical methods can be applied to
solve the set of ODE in (11), from the standpoint of numerical
efficiency it is advantageous to maximize analytical processing
in solving this equation. An expedient approach to use involves
decoupling of the unknowns by a linear transformation of

the solution w to the principal axis [7], followed by the
analytical solution of the decoupled system, and subsequent
retransformation to the original basis. Let

v(z) =TV (2) (15)

where T is a linear transformation and V(z) the transformed
solution. After substitution of (15) into (11) it becomes clear
that to decouple the unknowns, the matrix 7" must satisfy the
following generalized eigenvalue problem

AT = BTK (16)

wherein the columns of 7" are the eigenvectors and K =
diag(k?) is a diagonal matrix whose entries k2 represent the
corresponding eigenvalues. The given eigentvalue problem can
be solved numerically using well-established techniques and
widely available software [12].
When (11) is transformed to the principal axis, it takes on
the following form:

d?V(z) I /
7 KV(z) = —;sé(z -7

where § = T'B™'s.
This matrix equation corresponds to N uncoupled ordinary
differential equations.

(17)

Transmission Line Analogy for (17)

Since the elemental equations in (17) have the same form
and are independent, it suffices to examine one of them, e.g. the
equation for V,(z). Aside from the constant 3, (the ith element
of 8) in the source term, there is formal similarity between the
sth scalar equation in (17) and the Green function problem for
a transmission line excited by a current unit point-source. It is
convenient to exploit this similarity in generating solutions of
(17). The methodology for solving transmission line Green
function problems is well-known [13]-[15]. Therefore., an
analogy between the variables appearing in (17) and the
various transmission line parameters will permit its solution
by inspection. Table I summarizes the correspondence used to
establish the aforementioned analogy.

In order to apply transmission line analysis to the problem
at hand, each dielectric stratification in Fig. 1 is modeled by a
transmission line of appropriate characteristic impedance. The
analog of the three-layer configuration in Fig. 1 is the model
comprised of three cascaded transmission line sections. The
first and the third are terminated in short circuits (metalic plates
T,G), and the shunt point current source, representing the
delta function term on the right-hand side of (17). is connected
in the second section at z = 2’. Additional constraints,
analogous to (5), (6) and reflecting the continuity of voltage
and current, must be applied at the junctions between lines of
distinct characteristic impedance (dielectric interfaces).

The solution V,(z) to the sth differential equation in (17)
follows directly from the transmission line Green function
analysis. and Table I. Denoting the transmission line Green
function evaluated with k = k, by Z;(z, 2 ). the solution can
be expressed as follows

Vi(2) = Zi(2,2')4; (18)
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TABLE I
TRANSMISSION LINE ANALOGY FOR EQ. (17)
Variables in (19) | Transmission line parameters
Vi(2) Voltage V(z)
av;
—p (;iz) Current I(z)
1 T
Characteristic impedance Zg,
k,‘én
ke, Characteristic admittance Y,
k; Propagation constant k

where §; is the ith element of the vector $ defined in connec-
tion with (17). In matrix notation the solution becomes

V(z) = Z(2,2YT"'B™'s

where Z(z,7') = diag{Zi(z,2)}.

The solution v(z) to the original set of ODE is obtained by
transforming V into the original basis. Combining (15) and
(19) results in

(19)

v(2) =TZ(2,2)YT"*B™'s (20)

If the eigenvector matrix T is normalized according to TBT =
I, where the tilde denotes transposition, (20) can be written as

v(2) = {TZ(2,2\T}s = Z(z,2)s 21

where Z(z,z') denotes the bracketed matrix product.

Application of Boundary Conditions and
Calculation of Capacitance

The boundary conditions stated in (3) are applied at various
stages in the development of the solution. The conditions on
the lateral walls of the enclosure are incorporated into the
framework of the finite element model of the transverse-to-z
cross-section. The homogeneous Dirichlet condition on the top
T and bottom G plates (which becomes the far-field condition
when 7', are at infinity) is applied in the context of the
solution for the coefficients v(z). The remaining boundary
condition, ie. the one on the microstrip metal S, will be
enforced last. Completion of this step will make possible the
calculation of the charge () and the capacitance C.

To apply the boundary condition on the strip S, it is
necessary to return to (10) and substitute into it the derived
z-dependent coefficients. Then, letting z = 2’ in equation (21),
and applying the boundary condition (3) leads to the following
equation

¢0 = (g(xv Z/)

v(z) = $(z,y) Z(7', 2 )s forall(z,y,2/) €8 (22)

Expression (22) can be reduced to a set of linear equations
by enforcing the equality pointwise at all the nodes located
on S. The final result will be a matrix equation for the M
non-zero values of the vector s, where M is the number of
nodes in S.

The total charge () is computed simply by summing all the
elements of s. The proof is straightforward

M M
Z Sm = Z / U('T7y) ¢m(x7y) dx dy
m=1 m=1 A

=1

M
= [ ota) [Z qsm(x,y)] dz dy
A m=1
— [ ot dsdy=Q
A

(23)

III. NUMERICAL CONSIDERATIONS

Mesh Generation

In all cases considered here the transverse cross-section
A was partitioned into triangular elements. This choice
affords versatility in the modeling of irregularly-shaped
domains. Moreover, automatic generation and refinement of
triangular element meshes can be implemented with relative
ease. Distribution of the nodes—vertices of the elements—is
governed by several considerations, most important of which
is the local behavior of the solution. Intuitively. it is clear that
regions where the solution varies rapidly (and its derivatives
are large) require finer discretization, while portions of the
domain with relatively slow, smooth variations can have
coarser meshes. This point requires further elaboration in the
case of the semi-discrete finite element method, in which only
the transverse cross-section is discretized. In (9), the values
of the potential on the mesh are functions not only of the
coordinates x,y in the plane of the mesh, but of the vertical
coordinate (z) as well. Therefore, when the cross-section A
is discretized, the resulting mesh should be adopted to the
features of the solution in a continuum of z = constant planes.
It appears then, that the mesh geometry should change as a
function of z. However, this is not possible in the context of
the semi-discrete FEM. The way out of this dilemma is to tailor
the mesh to a specific z = constant plane, namely the one in
which the derivatives of the solution exhibit largest variation.
In the structure shown in Fig, 1 this is the strip (z = z’) plane,
because the second derivative of the solution is singular at the
strip edge. A very finely graded mesh is required in these areas
in order to minimize the error inherent in the piecewise-linear
interpolation of the solution. In the implemented meshing
algorithm, locations of the nodes were determined according
to a specified formula, depending on the relative distances of
a node to the outer walls and microstrip edges. The general
criterion used, requires the inter-node distances to decrease
approximately as the inverse square-root when approaching a
metal boundary from either side.
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Validation of the Solution

In (10) of the preceding section a set of basis functions was
introduced to approximate the (x,y) variation of the potential.
Numerical tests of the solution derived in that section were
performed with piecewise-linear basis functions. Derivation
of these and other types of basis functions, as well as the
methods used for calculation and assembly of the matrices
A, B can be found in most introductory texts on the finite
element method, e.g. [11], [16], and, therefore, will not be
discussed here. It should be mentioned, however, that because
all the finite element calculations, particularly the evaluation
of the integrals in (12)-(14), can be carried out analytically,
the time required to fill A, B is negligible.

The convergence characteristics of the formulated finite
element solution are summarized in Fig. 2. The case under
study is that of a circular disk with substrate thickness-to-
disk radius ratio ¢1/a = 1, with air dielectric substrate.
The enclosure-to-disk radius ratio ¢/a = 10. The reference
value for relative error calculations is determined using the
analytical formulas from [8]. Convergence is examined as a
function of the total number of mesh nodes, i.e. the number
of unknowns in the problem. The curve in Fig. 2 exhibits
two distinct rates of convergence, depending on the number
of nodes N. For smaller values of N the convergence is
O(1/N). For N > 500, the convergence rate appears to
decrease. its behavior now characterized as O(1/N%®). Note,
however, that the relative error at the point of convergence
rate transition is less than 1%. It can be shown [11] that for
an optimally distributed mesh, use of linear basis functions
should in fact result in O(1/N) convergence. The deviation
from this behavior for large values of NV can be attributed to
poorer mesh control and roundoff errors associated with the
solution of the eigenvalue problem stated in equation (16).
Incidentally, the solution of this eigen-equation constitutes the
bulk, 90% or greater, of the overall CPU time consumed.

Two microstrip geometries, namely the circular and the
rectangular (square), were selected in order to test the accuracy
of the solution. The primary reasons for this choice were:

i) the availability of published data for comparison, and ii)
the possibility of applying a different method to analyze
these geometries and thus obtain another set of reference
results.

Capacitance of a circular patch on a dielectric sheet in
front of a ground plane has been the subject of numerous
investigations. Wheeler [8] has combined the results of his
own derivations with previously published expressions and
numerical data to produce a highly accurate formula, valid for
the entire range of substrate thickness-to-disk radius (¢1/a)
and permittivity (e,1) values. The case of the disk in a multi-
layer dielectric environment has received less attention, and
few data were found in literature. In order to verify the validity
of the SDFEM for a wide range of configurations, including
the later case, an integral equation was formulated for a disk
in a cylindrical box containing stratified dielectric medium.
The integral equation was solved by the Moment Method,
employing suitable basis/testing functions. The details of the
integral equation solution are omitted. In all cases, the results
of calculations carried out with SDFEM will be compared
with integral equation derived data, and, where appropriate,
with values calculated from Wheeler’s formula.

Capacitance of a rectangular and square disks in a general
stratified medium has been computed by Bhat and Koul [2],
using the variational approach with an approximate form of
charge distribution on the strip. Additionally, as in the case
of the circular disk, an integral equation was formulated and
solved numerically.

Capacitance data for a circular disk on a single ground-
backed dielectric sheet are plotted in Fig. 3 as a function of the
ratio ¢1 /a, for several values of permittivity. Numerical studies
of the integral equation solution indicate that it converges
rapidly as the number of included modes in the Green function
summation and the number of entire-domain basis/testing
functions are increased. Therefore, data resuiting from the
integral equation solution are considered to be highly accurate.
Comparison between these data (labeled by IE in Fig. 3) and
capacitance values computed with SDFEM on a mesh which
contained 1162 nodes shows a uniform discrepancy in the
range of .5 — .8%, the SDFEM results being consistently
greater. Wheeler’s formula yields data which confirm the
accuracy of both the integral equation, as well as SDFEM,
calculations for smaller ¢1 /a values. They diverge when {1 /a
is large, because the configuration studied by Wheeler was
infinite in lateral extent, whereas the other formulations in-
cluded a metallic cylindrical wall. Tt was expected, and has
been confirmed that the capacitance is unaffected by the
walls presence, provided that that the ratio ¢1/a is smaller
than a certain number, which depends on the patch-to-wall
distance and the permittivity of the dielectric. As indicated
in the legend to Fig. 3, the SDFEM and integral equation
capacitance calculations were performed with ¢/¢ = 10. In
Fig. 4 the validity of SDFEM is verified for the case where
the disk is embedded in a multilayer (substrate-superstrate)
configuration. Again, the agreement with the integral equation
results is very good, the difference remaining less than 0.7%
throughout the entire range of geometrical and electrical
parameters.
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An array of calculations similar to that performed for a
circular disk was also carried out for the square microstrip
patch. The results are displayed in Fig. 5. The data were
obtained from three distinct sources, i.e. SDFEM method with
956 nodes, integral equation formulation and reference [2].
Most of the discussion pertaining to the circular disk remains
valid for the square path. The discrepancy between SDFEM
and the integral equation calculations is in all instances less
than 0.8%. The capacitance values acquired from the graphs
in [2] are typically 5 — 7% lower, with 1 — 2% attributable to
the device used to digitize the graphs.

Finally, to demonstrate the versatility of the SDFEM so-
lution, capacitances of patches with more complex, annular
geometries were calculated. In the first case the annulus is
bounded by two concentric circles, whereas in the second
case the outer boundary is an equilateral triangle. While it
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Fig. 5. Capacitance of a rectangular patch~-validation of the solution.
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Fig. 6. Capacitance of an annular patch with circular boundaries.

may still be possible to find appropriate basis functions and
solve the integral equation for the circular annulus, doing so
for the compound triangular-circular geometry would be very
difficult. On the other hand, the SDFEM solution is uniformly
applicable to such, and potentially more complex, geometries.
Capacitance of the 2 : 1 circular annulus is displayed in Fig.
6 as a function of the substrate thickness-to-outer circle radius
ratio (¢1/b), for a number of substrate permittivities. In Fig. 7
the capacitance of the triangular-circular annulus is plotted as
a function of the substrate thickness-to-inner circle diameter
(tl / 2(1) .

In order to facilitate comparison between various solutions,
the capacitance values in Figs. 3—7 were normalized by specific
expressions (Cy), listed in Table II. The formulas given
in Table II represent sums of the capacitances for the two
asymptotic limits of the patch-to-ground plane spacing, namely
zero and infinity.
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IV. CONCLUSIONS

The Semi-Discrete Finite Element method was used to ana-
lyze a static formulation for a class of microstrip components.
Among the demonstrated features of the SDFE method are
versatility—applicability to microstrip patches with arbitrary
metallization boundaries and ease of formulation and coding.
Comparison of the results obtained using the SDFE method
with data obtained from other solutions was used to validate
the method.
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