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Semi-Discrete Finite Element Method Analysis of

Arbitrary Microstrip Elements—Static Solution
Marat Davidovitz, Member, IEEE, and Zhiqiang Wu, S’mdent Member, IEEE

Abstract—The Semi-Discrete Finite Element Method is applied
to solve the Poisson equation for a class of microstrip structures.
This numerical technique is a variant of the conventional Finite
Element Method. Its name stems from the fact that finite element

approximation is implemented only along two of the Cartesian
coordinates, while the solution dependence on the third is handled

analytically. When applicable, this method is simpler and more

economical then the conventional fully-discrete version. Conver-

gence properties of the solution are examined, and its validity

tested for a number of geometries through comparison with other

solutions and published data.

I. INTRODUCTION

I N MANY situations of practical interest, particularly at

lower frequencies, planar microstrip circuits can be ac-

curately represented by lumped circuit models derived on

the basis of static analysis. Capacitances associated with

such models can be determined by solving, in most cases

numerically, an appropriate boundary value problem for the

Poisson equation. A variety of formulations and numerical

treatments have been employed in microstrip capacitance

calculations in the past [ 1]–[8].

In one possible approach to microstrip circuit modeling,

the governing partial differential equations are discretized by

means of the finite difference and the finite element methods,

and their variants. Particularly relevant to the subject of

this paper is the Method of Lines (MOL) [7], which is a

semi-discrete variant of the finite difference method, In the

Method of Lines discretization is introduced only along two

of the Cartesian coordinate directions, thereby transforming

the original set of partial differential equations into a set

of coupled Ordinary Differential Equations (ODE). This set

of equations can be solved analytically in most cases of

interest. Consequently, the computational burden, including

CPU time and storage requirements, is considerably reduced

in comparison with classical finite difference schemes. An

extensive review of the MOL applications, including the

contributions by Pregla, Shulz, Diestel, Worm, and others can

be found in [7].

In this paper a Semi-Discrete Finite Element Method (SD-

FEM) [9], [10] is described and applied to calculate the

capacitance of microstrip patches. This method is the finite

element analogue of the MOL. Although the partial discretiza-

Manuscript recewed August 27, 1990; revised July 30, 1992.
The authors are with the Department of Electrical Engineering, University

of Minnesota, 200 Union St., S.E,, Minneapolis, MN 55455.

IEEE Log Number 9206300.

tion approach is common to both the MOL and the SDFEM.

their analytical and numerical characteristics are different.

Specifically:

1.

2.

3.

4.

In

The discretization in the SDFEM is not limited to rect-

angular grids. The domain cari be divided into elements

of varying sizes, orientations and shapes. Thus, arbitrary

microstrip structures can be modeled very accurately.

Finite element methodology facilitates the use of un-

structured meshes and higher-order polynomial approxi-

mations. Computer algorithms based on these techniques

yield simple, yet generally applicable, software.

Since finite element meshes are not tied to specific grids,

they are amenable to local refinement.

In applying the MOL to thin microstrip elements, nodes

adjacent to microstrip boundaries are constrained to

specific locations in order to satisfy the edge-condition.

Transition conditions at dielectric boundaries also re-

quire special treatment. In certain SDFEM formulations,

such constraints can be incorporated without the need

for special treatment.

Section II of this paper an SDFEM analysis of the

Poisson equation for microstrip structures is presented. The

mathematical statement of the boundary value problem is

given in the first part of the section. A weak or variational

form of the Poisson equation, to be used as the basis for the

SDFEM method analysis, is introduced. The finite element

methodology is used to discretize the weak formulation, re-

ducing the problem to a set of coupled ODE. A technique

for solving the ODE set by employing a transmission line

analogy is described. Throughout the derivation of microstrip

geometry remaines arbitrary,

Computer implementation of the solution is discussed and
numerical results are presented in Section III. The choice of

the basis functions used in computing the results, methods

for calculation and assembly of the finite element matrices

are briefly mentioned. An outline of the mesh generating

algorithms is also presented. Validation of the solution is

considered next. Capacitance of two canonical microstrip

shapes, namely the circular and the rectangular is computed

and compared with the values obtained from an integral

equation solution, as well as with data obtained from a number

of referenced sources. Finally, to illustrate the versatility of

the SDFEM formulation, capacitance of more complicated

microstrip geometries is calculated and presented in graphical

form.

Conclusions are presented in Section IV, which also in-

cludes suggestions for future work.
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( F) Lw~
Fig. 1. Shielded microstrip patch in a stratified dielectric

(A, L?A-cross-section and its boundary, respectively).

II. FORMULATION OF THE SOLUTION

medium

A statement of the proposed problem, outlining the main

assumptions, is presented in this section. The semi-discrete

finite element method is introduced and applied to reduce the

formulation to a form suitable for computation,

Consider a planar circuit element formed by a single con-

ductive sheet embedded in a stratified dielectric medium,

as shown in Fig, 1, The conductive strip is assumedl to be

infinitessimally thin, but otherwise no restriction is placed

on its shape. The lateral extent of the dielectric is limited

by a cylindrical metalic enclosure, which may have an arbi-

trary cross-section. Metalic plates, parallel to the dielectric

interfaces, are introduced to terminate the structure on the

top and the bottom. Later it will be shown that although

numerical considerations dictate that the model have finite

lateral dimensions, vertically it may extend to infinity in either

direction, Moreover, the formalism introduced in this section

can be used to extend the analysis to circuits composed of any

number of dielectric layers and parallel metalic strips.

Problem Statement

In order to evaluate the capacitance of the circuit element

shown in Fig. 1 it will be necessary to solve the following

boundary value problem:

1. Poisson’s equation in the nth layer:

V2$$(Z, y, z) = –+P(3, y, 2’) (1)

where #($, y, ,z)-potential ~n—perrnittivity of the layer

P($, ~, ~)-charge density distribution

{

o
/2($, y, 2) = !fn=l’3 (2)

O(z,y) 6(2 – z’) If n = 2

2. Boundary conditions:

q$(x, y,z) = O if (x, y,z) E W, T, G (3)

4(z, g, 2) = #0 if (x, y, z) ● S (4)

3. Transition conditions at the kth dielectric interface (z =

Zk):

Solution of the posed problem yields m(z, y)—the charge

density distribution on the strip, from which the capacitance

can be calculated using the following formula

Q
Cs=z

where Q is the total charge residing on the strip, i.e.

(7)

Weak Form of the Problem Statement

In constructing finite element solutions it is cotimon to

abandon the differential equation statement of the pt’oblem in

favor of the so-called weak or variational formulation [11].

The semi-discrete FEM differs from the so-called conventional

methods in one key respect. In the semi-discrete approach one

of the Cartesian coordinates is treated as a parameter and finite

element discretization is introduced only on surfaces transverse

to this coordinate. For the problem at hand the z-coordinate

will serve as a parameter.

A weak formulation of (1) which will be used as the basis

for subsequent numerical analysis seeks a function @(z, y, z)

which will satisfy

for all values of z and all weight functions @(z, y) satisfying

certain integrability conditions [11]. The integration domain

in (9) is the cross-section A of the structure shown in Fig. 1.

@$/6% denotes the normal derivative of ~ on the contour 8A
bounding the cross-section A, and V* is the transverse (to z)

gradient operator.
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Finite Element Approximation

A combination of numerical and analytical methods will be

utilized to obtain an approximate solution to (9). In the first

stage of analysis, the cross-section A of the structure will be

divided into a finite number of simply-shaped sub-domains or

elements, collectively known as the finite element mesh. The

details of mesh construction are considered in Section III.

After the cross-section A has been discretized the Galerkin

method is implemented to construct an approximate solution

to the problem. The sought solution is expanded in terms of

the chosen basis set {#i (z, y) }~1 as follows

#($, y, ~) = ~ %(~) @,(~, Y) = J(? Y) ~(~) (lo)

~

where

~j (z) —value of the approximate solution at (zj, yj, z),

(z,, yj )~oordinates of the jth node in the mesh,

43 (~, y)—jth basis function,

d(z, Y) = vect{#j(x, y)},
v(z) = vect{vj(z)},

and tilde denotes transposition.

The basis functions ~i are generated using low-order poly-

nomials, defined piecewise over the individual elements. Each

basis function has a value of unity only at one node in the

mesh and is zero at all other nodes, i.e., q$j(zi, Y;) = ~~~,

where (TJ, yj ) are coordinates of the kth node in the mesh

and 6] k is the Kronecker delta.

Substitution of (10) into the weak statement (9) and use of

the functions {@i (x, y) }~1 to test the resulting equation over

the domain A, leads to the following system of N coupled,

ordinary differential equations in the N unknowns v;(z)

where v,s are N x 1 vectors and A, B are N x N sparse,

symmetric and positive-definite matrices, whose elements are

defined by the following equations

a~j =

/

Vtq$~ . Vtq$ dx dy (12)
A

bij =
I

~iq$j dx dy (13)
.4

B%=
/

(Jq$,dx d~ (14)
A

where a(z, y) is the surface charge density defined in (2).
Note that the boundary integral term in (9) does not con-

tribute to (11 )–( 14). This has been accomplished by requiring

that the weight functions have zero values on nodes located

on the boundary i3A of the cross-section. Thus, the boundary

condition (2) on the lateral wall W (Fig. 1) is satisfied.

Solution of the ODE Set

Although ~ number of numerical methods can be applied to

solve the set of ODE in (11), from the standpoint of numerical

efficiency it is advantageous to maximize analytical processing

in solving this equation. An expedient approach to use involves

decoupling of the unknowns by a linear transformation of

the solution v to the principal axis [7], followed by the

analytical solution of the decoupled system, and subsequent

retransformation to the original basis. Let

v(z) = TV(z) (15)

where T is a linear transformation and V(z) the transformed

solution. After substitution of (15) into (11) it becomes clear

that to decouple the unknowns, the matrix T must satisfy the

following generalized eigenvalue problem

AT= BTK (16)

wherein the columns of T are the eigenvectors and K =

diag(k~) is a diagonal matrix whose entries k? represent the

corresponding eigenvalues. The given eigetivalue problem can

be solved numerically using well-established techniques and

widely available software [12].

When (11) is transformed to the principal axis, it takes on

the following form:

where s = T–lB–lS.

This matrix equation corresponds to N uncoupled ordinary

differential equations.

Transmission Line Analogy for (17)

Since the elemental equations in (17) have the same form

and are independent, it suffices to examine one of them, e.g. the

equation for V,(z). Aside from the constant i, (the ith element

ofs) in the source term, there is formal similarity between the

ith scalar equation in (17) and the Green function problem for

a transmission line excited by a current unit point-source. It is

convenient to exploit this similarity in generating solutions of

(17). The methodology for solving transmission line Green

function problems is well-known [13]–[15]. Therefore, an

analogy between the variables appearing in (17) and the

various transmission line parameters will permit its solution

by inspection. Table I summarizes the correspondence used to

establish the aforementioned analogy.

In order to apply transmission line analysis to the problem

at hand, each dielectric stratification in Fig. 1 is modeled by a

transmission line of appropriate characteristic impedance. The

analog of the three-layer configuration in Fig. 1 is the model

comprised of three cascaded transmission line sections. The

first and the third are terminated in short circuits (metalic plates
T, G), and the shunt point current source, representing the

delta function term on the right-hand side of ( 17), is connected

in the second section at z = z’. Additional constraints,

analogous to (5), (6) and reflecting the continuity of voltage

and current, must be applied at the junctions between lines of

distinct characteristic impedance (dielectric interfaces).

The solution V,(2) to the ith differential equation in (17)

follows directly from the transmission line Green function

analysis, and Table I. Denoting the transmission line Green

function evaluated with k = k, by 2i (z, z’), the solution can

be expressed as follows

u(z) = Zj(z, z’);i (18)
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TABLE I
TRANSMISSIONLINE ANALOGY FOR EQ. (17)

+--==--

Variables in (19) Transmission line parameters

d~(z)
‘en dz

Current 1(z)

1
Characteristic impedance 2..

ki~n

ki~n Characteristic admittance Yo.

ki Propagation constant k

Expression (22) can be reduced to a set of linear equations

by enforcing the equality pointwise at all the nodes located

on S. The final result will be a matrix equation for the ill

non-zero values of the vector s, where M is the number of

nodes in S.

The total charge Q is computed simply by summing all the

elements of s. The proof is straightforward

=~~(xy)[g,+m($y
—-/ O(X, y) dxdy = Q (23)

A

III. NUMERICAL CONSIDERATIONS

where iii is the ith element of the vector g defined in connec-

tion with (17). In matrix notation the solution becomes

v(z) = Z(Z, Z’)T-lB-lS (19)

where 2(,z, z’) = diag{2i(z, z’)}.

The solution v(z) to the original set of ODE is obtained by

transforming V into the original basis. Combining (15) and

(19) results in

w(z) = Tz(z, Z’)T–lB–l S (20)

If the eigenvector matrix T is normalized according to ~BT =

1, where the tilde denotes transposition, (20) can be written as

v(z) = {Tz(z, Z’)k}s = 2(2, .z’)s (21)

where 2(z, z’ ) denotes the bracketed matrix product.

Application of Boundaty Conditions and

Calculation of Capacitance

The boundary conditions stated in (3) are applied at various

stages in the development of the solution. The conditions on

the lateral walls of the enclosure are incorporated into the

framework of the finite element model of the transverse-to-z

cross-section. The homogeneous Dirichlet condition on the top

T and bottom G plates (which becomes the far-field condition

when T, G are at infinity) is applied in the context of the

solution for the coefficients V(Z). The remaining boundary

condition, i.e. the one on the microstrip metal S, will be

enforced last. Completion of this step will make possible the

calculation of the charge Q and the capacitance C.

To apply the boundary condition on the strip S, it is

necessary to return to (10) and substitute into it the derived

z-dependent coefficients. Then, letting z = z’ in equation(21 ),

and applying the boundary condition (3) leads to the following

equation

4’0 = J(T Y)

v(z) = j(z, y) 2(x’, Z’)S for all (x, y, z’) E S (22)

Mesh Generation

In all cases considered here the transverse cross-section

A was partitioned into triangular elements. This choice

affords versatility in the modeling of irregularly-shaped

domains. Moreover, automatic generation and refinement of

triangular element meshes can be implemented with relative

ease. Distribution of the nodes—vertices of the elements—is

governed by several considerations, most important of which

is the local behavior of the solution. Intuitively, it is clear that

regions where the solution varies rapidly (and its derivatives

are large) require finer discretization, while portions of the

domain with relatively slow, smooth variations can have

coarser meshes. This point requires further elaboration in the

case of the semi-discrete finite element method, in which only

the transverse cross-section is discretized. In (9), the values

of the potential on the mesh are functions not only of the

coordinates x, y in the plane of the mesh, but of the vertical

coordinate (z) as well. Therefore, when the cross-section A

is discretized, the resulting mesh should be adopted to the

features of the solution in a continuum of z = constant planes.

It appears then, that the mesh geometry should change as a

function of z, However, this is not possible in the context of

the semi-discrete FEM. The way out of this dilemma is to tailor

the mesh to a specific z = constant plane, namely the one in

which the derivatives of the solution exhibit largest variation.

In the structure shown in Fig. 1 this is the strip (z = z’) plane,

because the second derivative of the solution is singular at the

strip edge. A very finely graded mesh is required in these areas

in order to minimize the error inherent in the piecewise-linear

interpolation of the solution. In the implemented meshing

algorithm, locations of the nodes were determined according

to a specified formula, depending on the relative distances of

a node to the outer walls and microstrip edges. The general

criterion used, requires the inter-node distances to decrease

approximately as the inverse square-root when approaching a

metal boundary from either side.
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Fig. 2. Typical relative convergence curve.

Validation of the Solution

In (10) of the preceding section a set of basis functions was

introduced to approximate the (x, g) variation of the potential.

Numerical tests of the solution derived in that section were

performed with piecewise-linear basis functions. Derivation

of these and other types of basis functions, as well as the

methods used for calculation and assembly of the matrices

A, B can be found in most introductory texts on the finite

element method, e.g. [11 ], [16], and, therefore, will not be

discussed here. It should be mentioned, however, that because

all the finite element calculations, particularly the evaluation

of the integrals in ( 12)–( 14), can be carried out analytically,

the time required to fill A, B is negligible.

The convergence characteristics of the formulated finite

element solution are summarized in Fig. 2. The case under

study is that of a circular disk with substrate thickness-to-

disk radius ratio tI /a = 1, with air dielectric substrate.

The enclosure-to-disk radius ratio c/a = 10. The reference

value for relative error calculations is determined using the

analytical formulas from [8]. Convergence is examined as a

function of the total number of mesh nodes, i.e. the number

of unknowns in the problem. The curve in Fig. 2 exhibits

two distinct rates of convergence, depending on the number

of nodes N. For smaller values of N the convergence is

0(1/N). For IV > 500, the convergence rate appears to

decrease. its behavior now characterized as 0(1/lV06). Note,

however, that the relative error at the point of convergence

rate transition is less than 190. It can be shown [11] that for

an optimally distributed mesh, use of linear basis functions

should in fact result in 0( l/lV) convergence. The deviation

from this behavior for large values of N can be attributed to

poorer mesh control and roundoff errors associated with the

solution of the eigenvalue problem stated in equation (16).

Incidentally, the solution of this eigen-equation constitutes the

bulk, 90% or greater, of the overall CPU time consumed.

Two microstrip geometries, namely the circular and the

rectangular (square), were selected in order to test the accuracy

of the solution. The primary reasons for this choice were:

i) the availability of published data for comparison, and ii)

the possibility of applying a different method to analyze

these geometries and thus obtain another set of reference

results.

Capacitance of a circular patch on a dielectric sheet in

front of a ground plane has been the subject of numerous

investigations. Wheeler [8] has combined the results of his

own derivations with previously published expressions and

numerical data to produce a highly accurate formula, valid for

the entire range of substrate thickness-to-disk radius (tl /a)

and perrnittivity (G.1) values. The case of the disk in a multi-

layer dielectric environment has received less attention, and

few data were found in literature. In order to verify the validity

of the SDFEM for a wide range of configurations, including

the later case, an integral equation was formulated for a disk

in a cylindrical box containing stratified dielectric medium.

The integral equation was solved by the Moment Method,

employing suitable basis/testing functions. The details of the

integral equation solution are omitted. In all cases, the results

of calculations carried out with SDFEM will be compared

with integral equation derived data, and, where appropriate,

with values calculated from Wheeler’s formula.

Capacitance of a rectangular and square disks in a general

stratified medium has been computed by Bhat and Koul [2],

using the variational approach with an approximate form of

charge distribution on the strip. Additionally, as in the case

of the circular disk, an integral equation was formulated and

solved numerically.

Capacitance data for a circular disk on a single ground-

backed dielectric sheet are plotted in Fig. 3 as a function of the

ratio tl / a, for several values of permittivit y. Numerical studies

of the integral equation solution indicate that it converges

rapidly as the number of included modes in the Green function

summation and the number of entire-domain basis\testing

functions are increased. Therefore, data resulting from the

integral equation solution are considered to be highly accurate.

Comparison between these data (labeled by IE in Fig. 3) and

capacitance values computed with SDFEM on a mesh which

contained 1162 nodes shows a uniform discrepancy in the

range of .5 – .8%, the SDFEM results being consistently

greater. Wheeler’s formula yields data which confirm the

accuracy of both the integral equation, as well as SDFEM,

calculations for smaller tl /a values. They diverge when tl /a

is large, because the configuration studied by Wheeler was

infinite in lateral extent, whereas the other formulations in-

cluded a metallic cylindrical wall. It was expected, and has

been confirmed that the capacitance is unaffected by the

walls presence, provided that that the ratio tl /a is smaller

than a certain number, which depends on the patch-to-wall

distance and the permittivity of the dielectric. As indicated

in the legend to Fig. 3, the SDFEM and integral equation

capacitance calculations were performed with c/a = 10, In

Fig. 4 the validity of SDFEM is verified for the case where

the disk is embedded in a multilayer (substrate-superstrate)

configuration. Again, the agreement with the integral equation

results is very good, the difference remaining less than ().’7~o

throughout the entire range of geometrical and electrical

parameters.
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Fig. 3. Capacitance of a circular disk on a dielectric substrate—validation
of the solution.

1 1 I , ‘~

/+

.
/’,

41 , 1 d

01 1 1, 10.

tl /a

Fig. 4. Capacitance of a suspended circular dkk-validation of the solution.

An array of calculations similar to that performed for a

circular disk was also carried out for the square mic rostrip

patch. The results are displayed in Fig. 5. The data were

obtained from three distinct sources, i.e. SDFEM method with

956 nodes, integral equation formulation and reference [2].

Most of the discussion pertaining to the circular disk remains

valid for the square path. The discrepancy between SDFEM

and the integral equation calculations is in all instances less

than 0.87.. The capacitance values acquired from the graphs

in [2] are typically 5 – 770 lower, with 1 – 2~o attributable to

the device used to digitize the graphs.

Finally, to demonstrate the versatility of the SDFEM so-

lution, capacitances of patches with more complex, annular

geometries were calculated. In the first case the annulus is

bounded by two concentric circles, whereas in the second

case the outer boundary is an equilateral triangle. While it

1.2 -

11

8 -

7 -

,5 - 0

0 0

41 , 0 1 i

01 1 1 10.

tl /a

Fig. 5, Capacitance of a rectangular patch—validation of the solution,

1 -

0 - 6,1 = 1

— SDFEM
,g~—

01 1 1, 1

t, /2a

Fig. 6. Capacitance of an annular patch with circular boundaries.

may still be possible to find appropriate basis functions and

solve the integral equation for the circular annulus, doing so

for the compound triangular-circular geometry would be very

difficult. On the other hand, the SDFEM solution is uniformly

applicable to such, and potentially more complex, geometries.

Capacitance of the 2:1 circular annulus is displayed in Fig.

6 as a function of the substrate thickness-to-outer circle radius

ratio (tl /b), for a number of substrate permittivities. In Fig, 7

the capacitance of the triangular-circular annulus is plotted as

a function of the substrate thickness-to-inner circle diameter

(t,/2a).
In order to facilitate comparison between various solutions,

the capacitance values in Figs. 3–7 were normalized by specific

expressions (CAT), listed in Table 11. The formulas given

in Table II represent sums of the capacitances for the two

asymptotic limits of the patch-to-ground plane spacing, namely

zero and infinity.
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12, , I 1

v“ 1
1

1

Fig. 7. Capacitance of an annular patch with an equilateral-triangular outer
and circular jnner boundaries.

TABLE II

NORMALIZATION CAPACITANCE C,v

Figure # cm Patch area A

4 8.Oa 7ra2

5 8.Oa Ta2

6 4.7a a’

7 8.4b m(b’ – a’)

8 37.2a 0.433b2 – ra2

IV. CONCLUSIONS

The Semi-Discrete Finite Element method was used to ana-

lyze a static formulation for a class of microstrip components.

Among the demonstrated features of the SDFE method are

versatility—applicability to microstrip patches with arbitrary

metallization boundaries and ease of formulation and coding.

Comparison of the results obtained using the SDFE method

with data obtained from other solutions was used to validate

the method.
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